
NoSQL

By Perry Hoekstra

 Technical Consultant

 Perficient, Inc.

 perry.hoekstra@perficient.com

2

Why this topic?

Client’s Application Roadmap

– “Reduction of cycle time for the document
intake process. Currently, it can take anywhere
from a few days to a few weeks from the time
the documents are received to when they are
available to the client.”

New York Times used Hadoop/MapReduce to
convert pre-1980 articles that were TIFF
images to PDF.

3

Agenda

Some history

What is NoSQL

CAP Theorem

What is lost

Types of NoSQL

Data Model

Frameworks

Demo

Wrapup

4

History of the World, Part 1

Relational Databases – mainstay of business

Web-based applications caused spikes

– Especially true for public-facing e-Commerce sites

Developers begin to front RDBMS with memcache or
integrate other caching mechanisms within the
application (ie. Ehcache)

5

Scaling Up

 Issues with scaling up when the dataset is just too
big

RDBMS were not designed to be distributed

Began to look at multi-node database solutions

Known as ‘scaling out’ or ‘horizontal scaling’

Different approaches include:

– Master-slave

– Sharding

6

Scaling RDBMS – Master/Slave

Master-Slave

– All writes are written to the master. All reads
performed against the replicated slave databases

– Critical reads may be incorrect as writes may not
have been propagated down

– Large data sets can pose problems as master needs
to duplicate data to slaves

7

Scaling RDBMS - Sharding

Partition or sharding

– Scales well for both reads and writes

– Not transparent, application needs to be partition-
aware

– Can no longer have relationships/joins across
partitions

– Loss of referential integrity across shards

8

Other ways to scale RDBMS

Multi-Master replication

 INSERT only, not UPDATES/DELETES

No JOINs, thereby reducing query time

– This involves de-normalizing data

 In-memory databases

9

What is NoSQL?

Stands for Not Only SQL

Class of non-relational data storage systems

Usually do not require a fixed table schema nor do
they use the concept of joins

All NoSQL offerings relax one or more of the ACID
properties (will talk about the CAP theorem)

10

Why NoSQL?

For data storage, an RDBMS cannot be the be-
all/end-all

 Just as there are different programming languages,
need to have other data storage tools in the toolbox

A NoSQL solution is more acceptable to a client now
than even a year ago

– Think about proposing a Ruby/Rails or Groovy/Grails
solution now versus a couple of years ago

11

How did we get here?

Explosion of social media sites (Facebook,
Twitter) with large data needs

Rise of cloud-based solutions such as Amazon
S3 (simple storage solution)

 Just as moving to dynamically-typed
languages (Ruby/Groovy), a shift to
dynamically-typed data with frequent schema
changes

Open-source community

12

Dynamo and BigTable

Three major papers were the seeds of the NoSQL
movement

– BigTable (Google)

– Dynamo (Amazon)

• Gossip protocol (discovery and error detection)

• Distributed key-value data store

• Eventual consistency

– CAP Theorem (discuss in a sec ..)

13

The Perfect Storm

Large datasets, acceptance of alternatives, and
dynamically-typed data has come together in a
perfect storm

Not a backlash/rebellion against RDBMS

SQL is a rich query language that cannot be rivaled
by the current list of NoSQL offerings

14

CAP Theorem

Three properties of a system: consistency,
availability and partitions

You can have at most two of these three properties
for any shared-data system

To scale out, you have to partition. That leaves
either consistency or availability to choose from

– In almost all cases, you would choose availability over
consistency

15

Availability

Traditionally, thought of as the server/process
available five 9’s (99.999 %).

However, for large node system, at almost any point
in time there’s a good chance that a node is either
down or there is a network disruption among the
nodes.

– Want a system that is resilient in the face of network
disruption

16

Consistency Model

A consistency model determines rules for visibility
and apparent order of updates.

For example:

– Row X is replicated on nodes M and N

– Client A writes row X to node N

– Some period of time t elapses.

– Client B reads row X from node M

– Does client B see the write from client A?

– Consistency is a continuum with tradeoffs

– For NoSQL, the answer would be: maybe

– CAP Theorem states: Strict Consistency can't be
achieved at the same time as availability and partition-
tolerance.

17

Eventual Consistency

When no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the nodes will be consistent

For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID

18

What kinds of NoSQL

NoSQL solutions fall into two major areas:

– Key/Value or ‘the big hash table’.

• Amazon S3 (Dynamo)

• Voldemort

• Scalaris

– Schema-less which comes in multiple flavors,
column-based, document-based or graph-
based.

• Cassandra (column-based)

• CouchDB (document-based)

• Neo4J (graph-based)

• HBase (column-based)

19

Key/Value

Pros:

– very fast

– very scalable

– simple model

– able to distribute horizontally

Cons:

- many data structures (objects) can't be easily
modeled as key value pairs

20

Schema-Less

Pros:

- Schema-less data model is richer than key/value pairs

- eventual consistency

- many are distributed

- still provide excellent performance and scalability

Cons:

- typically no ACID transactions or joins

21

Common Advantages

 Cheap, easy to implement (open source)

 Data are replicated to multiple nodes (therefore identical
and fault-tolerant) and can be partitioned

– Down nodes easily replaced

– No single point of failure

 Easy to distribute

 Don't require a schema

 Can scale up and down

 Relax the data consistency requirement (CAP)

22

What am I giving up?

 joins

group by

order by

ACID transactions

SQL as a sometimes frustrating but still powerful
query language

easy integration with other applications that support
SQL

23

Cassandra

Originally developed at Facebook

Follows the BigTable data model: column-oriented

Uses the Dynamo Eventual Consistency model

Written in Java

Open-sourced and exists within the Apache family

Uses Apache Thrift as it’s API

24

Typical NoSQL API

Basic API access:

– get(key) -- Extract the value given a key

– put(key, value) -- Create or update the value given
its key

– delete(key) -- Remove the key and its associated
value

– execute(key, operation, parameters) -- Invoke an
operation to the value (given its key) which is a
special data structure (e.g. List, Set, Map etc).

25

Cassandra and Consistency

Talked previous about eventual consistency

Cassandra has programmable read/writable
consistency

– One: Return from the first node that responds

– Quorom: Query from all nodes and respond with the
one that has latest timestamp once a majority of
nodes responded

– All: Query from all nodes and respond with the one
that has latest timestamp once all nodes responded.
An unresponsive node will fail the node

26

Cassandra and Consistency

– Zero: Ensure nothing. Asynchronous write done in
background

– Any: Ensure that the write is written to at least 1
node

– One: Ensure that the write is written to at least 1
node’s commit log and memory table before receipt to
client

– Quorom: Ensure that the write goes to node/2 + 1

– All: Ensure that writes go to all nodes. An
unresponsive node would fail the write

27

Some Statistics

Facebook Search

MySQL > 50 GB Data

– Writes Average : ~300 ms

– Reads Average : ~350 ms

Rewritten with Cassandra > 50 GB Data

– Writes Average : 0.12 ms

– Reads Average : 15 ms

28

Don’t forget about the DBA

 It does not matter if the data is deployed on a
NoSQL platform instead of an RDBMS.

Still need to address:

– Backups & recovery

– Capacity planning

– Performance monitoring

– Data integration

– Tuning & optimization

What happens when things don’t work as
expected and nodes are out of sync or you
have a data corruption occurring at 2am?

Who you gonna call?

– DBA and SysAdmin need to be on board

