
NoSQL

By Perry Hoekstra

 Technical Consultant

 Perficient, Inc.

 perry.hoekstra@perficient.com

2

Why this topic?

Client’s Application Roadmap

– “Reduction of cycle time for the document
intake process. Currently, it can take anywhere
from a few days to a few weeks from the time
the documents are received to when they are
available to the client.”

New York Times used Hadoop/MapReduce to
convert pre-1980 articles that were TIFF
images to PDF.

3

Agenda

Some history

What is NoSQL

CAP Theorem

What is lost

Types of NoSQL

Data Model

Frameworks

Demo

Wrapup

4

History of the World, Part 1

Relational Databases – mainstay of business

Web-based applications caused spikes

– Especially true for public-facing e-Commerce sites

Developers begin to front RDBMS with memcache or
integrate other caching mechanisms within the
application (ie. Ehcache)

5

Scaling Up

 Issues with scaling up when the dataset is just too
big

RDBMS were not designed to be distributed

Began to look at multi-node database solutions

Known as ‘scaling out’ or ‘horizontal scaling’

Different approaches include:

– Master-slave

– Sharding

6

Scaling RDBMS – Master/Slave

Master-Slave

– All writes are written to the master. All reads
performed against the replicated slave databases

– Critical reads may be incorrect as writes may not
have been propagated down

– Large data sets can pose problems as master needs
to duplicate data to slaves

7

Scaling RDBMS - Sharding

Partition or sharding

– Scales well for both reads and writes

– Not transparent, application needs to be partition-
aware

– Can no longer have relationships/joins across
partitions

– Loss of referential integrity across shards

8

Other ways to scale RDBMS

Multi-Master replication

 INSERT only, not UPDATES/DELETES

No JOINs, thereby reducing query time

– This involves de-normalizing data

 In-memory databases

9

What is NoSQL?

Stands for Not Only SQL

Class of non-relational data storage systems

Usually do not require a fixed table schema nor do
they use the concept of joins

All NoSQL offerings relax one or more of the ACID
properties (will talk about the CAP theorem)

10

Why NoSQL?

For data storage, an RDBMS cannot be the be-
all/end-all

 Just as there are different programming languages,
need to have other data storage tools in the toolbox

A NoSQL solution is more acceptable to a client now
than even a year ago

– Think about proposing a Ruby/Rails or Groovy/Grails
solution now versus a couple of years ago

11

How did we get here?

Explosion of social media sites (Facebook,
Twitter) with large data needs

Rise of cloud-based solutions such as Amazon
S3 (simple storage solution)

 Just as moving to dynamically-typed
languages (Ruby/Groovy), a shift to
dynamically-typed data with frequent schema
changes

Open-source community

12

Dynamo and BigTable

Three major papers were the seeds of the NoSQL
movement

– BigTable (Google)

– Dynamo (Amazon)

• Gossip protocol (discovery and error detection)

• Distributed key-value data store

• Eventual consistency

– CAP Theorem (discuss in a sec ..)

13

The Perfect Storm

Large datasets, acceptance of alternatives, and
dynamically-typed data has come together in a
perfect storm

Not a backlash/rebellion against RDBMS

SQL is a rich query language that cannot be rivaled
by the current list of NoSQL offerings

14

CAP Theorem

Three properties of a system: consistency,
availability and partitions

You can have at most two of these three properties
for any shared-data system

To scale out, you have to partition. That leaves
either consistency or availability to choose from

– In almost all cases, you would choose availability over
consistency

15

Availability

Traditionally, thought of as the server/process
available five 9’s (99.999 %).

However, for large node system, at almost any point
in time there’s a good chance that a node is either
down or there is a network disruption among the
nodes.

– Want a system that is resilient in the face of network
disruption

16

Consistency Model

A consistency model determines rules for visibility
and apparent order of updates.

For example:

– Row X is replicated on nodes M and N

– Client A writes row X to node N

– Some period of time t elapses.

– Client B reads row X from node M

– Does client B see the write from client A?

– Consistency is a continuum with tradeoffs

– For NoSQL, the answer would be: maybe

– CAP Theorem states: Strict Consistency can't be
achieved at the same time as availability and partition-
tolerance.

17

Eventual Consistency

When no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the nodes will be consistent

For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID

18

What kinds of NoSQL

NoSQL solutions fall into two major areas:

– Key/Value or ‘the big hash table’.

• Amazon S3 (Dynamo)

• Voldemort

• Scalaris

– Schema-less which comes in multiple flavors,
column-based, document-based or graph-
based.

• Cassandra (column-based)

• CouchDB (document-based)

• Neo4J (graph-based)

• HBase (column-based)

19

Key/Value

Pros:

– very fast

– very scalable

– simple model

– able to distribute horizontally

Cons:

- many data structures (objects) can't be easily
modeled as key value pairs

20

Schema-Less

Pros:

- Schema-less data model is richer than key/value pairs

- eventual consistency

- many are distributed

- still provide excellent performance and scalability

Cons:

- typically no ACID transactions or joins

21

Common Advantages

 Cheap, easy to implement (open source)

 Data are replicated to multiple nodes (therefore identical
and fault-tolerant) and can be partitioned

– Down nodes easily replaced

– No single point of failure

 Easy to distribute

 Don't require a schema

 Can scale up and down

 Relax the data consistency requirement (CAP)

22

What am I giving up?

 joins

group by

order by

ACID transactions

SQL as a sometimes frustrating but still powerful
query language

easy integration with other applications that support
SQL

23

Cassandra

Originally developed at Facebook

Follows the BigTable data model: column-oriented

Uses the Dynamo Eventual Consistency model

Written in Java

Open-sourced and exists within the Apache family

Uses Apache Thrift as it’s API

24

Typical NoSQL API

Basic API access:

– get(key) -- Extract the value given a key

– put(key, value) -- Create or update the value given
its key

– delete(key) -- Remove the key and its associated
value

– execute(key, operation, parameters) -- Invoke an
operation to the value (given its key) which is a
special data structure (e.g. List, Set, Map etc).

25

Cassandra and Consistency

Talked previous about eventual consistency

Cassandra has programmable read/writable
consistency

– One: Return from the first node that responds

– Quorom: Query from all nodes and respond with the
one that has latest timestamp once a majority of
nodes responded

– All: Query from all nodes and respond with the one
that has latest timestamp once all nodes responded.
An unresponsive node will fail the node

26

Cassandra and Consistency

– Zero: Ensure nothing. Asynchronous write done in
background

– Any: Ensure that the write is written to at least 1
node

– One: Ensure that the write is written to at least 1
node’s commit log and memory table before receipt to
client

– Quorom: Ensure that the write goes to node/2 + 1

– All: Ensure that writes go to all nodes. An
unresponsive node would fail the write

27

Some Statistics

Facebook Search

MySQL > 50 GB Data

– Writes Average : ~300 ms

– Reads Average : ~350 ms

Rewritten with Cassandra > 50 GB Data

– Writes Average : 0.12 ms

– Reads Average : 15 ms

28

Don’t forget about the DBA

 It does not matter if the data is deployed on a
NoSQL platform instead of an RDBMS.

Still need to address:

– Backups & recovery

– Capacity planning

– Performance monitoring

– Data integration

– Tuning & optimization

What happens when things don’t work as
expected and nodes are out of sync or you
have a data corruption occurring at 2am?

Who you gonna call?

– DBA and SysAdmin need to be on board

