
NoSQL 

By Perry Hoekstra 

     Technical Consultant 

     Perficient, Inc. 

 

     perry.hoekstra@perficient.com 



2 

Why this topic? 

Client’s Application Roadmap 

– “Reduction of cycle time for the document 
intake process.  Currently, it can take anywhere 
from a few days to a few weeks from the time 
the documents are received to when they are 
available to the client.” 

New York Times used Hadoop/MapReduce to 
convert pre-1980 articles that were TIFF 
images to PDF. 
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History of the World, Part 1 

Relational Databases – mainstay of business 

Web-based applications caused spikes 

– Especially true for public-facing e-Commerce sites 

Developers begin to front RDBMS with memcache or 
integrate other caching mechanisms within the 
application (ie. Ehcache) 
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Scaling Up 

 Issues with scaling up when the dataset is just too 
big 

RDBMS were not designed to be distributed 

Began to look at multi-node database solutions 

Known as ‘scaling out’ or ‘horizontal scaling’ 

Different approaches include: 

– Master-slave 

– Sharding 
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Scaling RDBMS – Master/Slave 

Master-Slave 

– All writes are written to the master. All reads 
performed against the replicated slave databases 

– Critical reads may be incorrect as writes may not 
have been propagated down 

– Large data sets can pose problems as master needs 
to duplicate data to slaves 
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Scaling RDBMS - Sharding 

Partition or sharding 

– Scales well for both reads and writes 

– Not transparent, application needs to be partition-
aware 

– Can no longer have relationships/joins across 
partitions 

– Loss of referential integrity across shards 
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Other ways to scale RDBMS 

Multi-Master replication 

 INSERT only, not UPDATES/DELETES 

No JOINs, thereby reducing query time 

– This involves de-normalizing data 

 In-memory databases 
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What is NoSQL? 

Stands for Not Only SQL 

Class of non-relational data storage systems 

Usually do not require a fixed table schema nor do 
they use the concept of joins 

All NoSQL offerings relax one or more of the ACID 
properties (will talk about the CAP theorem) 
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Why NoSQL? 

For data storage, an RDBMS cannot be the be-
all/end-all 

 Just as there are different programming languages, 
need to have other data storage tools in the toolbox 

A NoSQL solution is more acceptable to a client now 
than even a year ago 

– Think about proposing a Ruby/Rails or Groovy/Grails 
solution now versus a couple of years ago 
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How did we get here? 

Explosion of social media sites (Facebook, 
Twitter) with large data needs 

Rise of cloud-based solutions such as Amazon 
S3 (simple storage solution) 

 Just as moving to dynamically-typed 
languages (Ruby/Groovy), a shift to 
dynamically-typed data with frequent schema 
changes 

Open-source community 
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Dynamo and BigTable 

Three major papers were the seeds of the NoSQL 
movement 

– BigTable (Google) 

– Dynamo (Amazon) 

• Gossip protocol (discovery and error detection) 

• Distributed key-value data store 

• Eventual consistency 

– CAP Theorem (discuss in a sec ..) 
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The Perfect Storm 

Large datasets, acceptance of alternatives, and 
dynamically-typed data has come together in a 
perfect storm 

Not a backlash/rebellion against RDBMS 

SQL is a rich query language that cannot be rivaled 
by the current list of NoSQL offerings 
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CAP Theorem 

Three properties of a system: consistency, 
availability and partitions 

You can have at most two of these three properties 
for any shared-data system 

To scale out, you have to partition.  That leaves 
either consistency or availability to choose from 

– In almost all cases, you would choose availability over 
consistency 
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Availability 

Traditionally, thought of as the server/process 
available five 9’s (99.999 %). 

However, for large node system, at almost any point 
in time there’s a good chance that a node is either 
down or there is a network disruption among the 
nodes.  

– Want a system that is resilient in the face of network 
disruption 
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Consistency Model 

A consistency model determines rules for visibility 
and apparent order of updates. 

For example: 

– Row X is replicated on nodes M and N 

– Client A writes row X to node N 

– Some period of time t elapses. 

– Client B reads row X from node M 

– Does client B see the write from client A? 

– Consistency is a continuum with tradeoffs 

– For NoSQL, the answer would be: maybe 

– CAP Theorem states: Strict Consistency can't be 
achieved at the same time as availability and partition-
tolerance. 
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Eventual Consistency 

When no updates occur for a long period of time, 
eventually all updates will propagate through the 
system and all the nodes will be consistent 

For a given accepted update and a given node, 
eventually either the update reaches the node or the 
node is removed from service 

Known as BASE (Basically Available, Soft state, 
Eventual consistency), as opposed to ACID 
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What kinds of NoSQL 

NoSQL solutions fall into two major areas: 

– Key/Value or ‘the big hash table’. 

• Amazon S3 (Dynamo) 

• Voldemort 

• Scalaris 

– Schema-less which comes in multiple flavors, 
column-based, document-based or graph-
based. 

• Cassandra (column-based) 

• CouchDB (document-based) 

• Neo4J (graph-based) 

• HBase (column-based)  
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Key/Value 

Pros: 

– very fast 

– very scalable 

– simple model 

– able to distribute horizontally 

 

Cons:  

- many data structures (objects) can't be easily 
modeled as key value pairs  
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Schema-Less 

Pros: 

- Schema-less data model is richer than key/value pairs 

- eventual consistency 

- many are distributed 

- still provide excellent performance and scalability 
 

Cons:  

- typically no ACID transactions or joins  
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Common Advantages 

 Cheap, easy to implement (open source) 

 Data are replicated to multiple nodes (therefore identical 
and fault-tolerant) and can be partitioned 

– Down nodes easily replaced 

– No single point of failure 

 Easy to distribute 

 Don't require a schema 

 Can scale up and down 

 Relax the data consistency requirement (CAP) 
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What am I giving up? 

 joins 

group by 

order by 

ACID transactions 

SQL as a sometimes frustrating but still powerful 
query language 

easy integration with other applications that support 
SQL 
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Cassandra 

Originally developed at Facebook 

Follows the BigTable data model: column-oriented 

Uses the Dynamo Eventual Consistency model 

Written in Java 

Open-sourced and exists within the Apache family 

Uses Apache Thrift as it’s API 
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Typical NoSQL API 

Basic API access: 

– get(key) -- Extract the value given a key 

– put(key, value) -- Create or update the value given 
its key 

– delete(key) -- Remove the key and its associated 
value 

– execute(key, operation, parameters) -- Invoke an 
operation to the value (given its key) which is a 
special data structure (e.g. List, Set, Map .... etc). 
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Cassandra and Consistency 

Talked previous about eventual consistency 

Cassandra has programmable read/writable 
consistency 

– One: Return from the first node that responds 

– Quorom: Query from all nodes and respond with the 
one that has latest timestamp once a majority of 
nodes responded 

– All: Query from all nodes and respond with the one 
that has latest timestamp once all nodes responded. 
An unresponsive node will fail the node 
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Cassandra and Consistency 

– Zero: Ensure nothing. Asynchronous write done in 
background 

– Any: Ensure that the write is written to at least 1 
node 

– One: Ensure that the write is written to at least 1 
node’s commit log and memory table before receipt to 
client 

– Quorom: Ensure that the write goes to node/2 + 1 

– All: Ensure that writes go to all nodes.  An 
unresponsive node would fail the write 
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Some Statistics 

Facebook Search 

MySQL > 50 GB Data 

– Writes Average : ~300 ms 

– Reads Average : ~350 ms 

Rewritten with Cassandra > 50 GB Data 

– Writes Average : 0.12 ms 

– Reads Average : 15 ms 
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Don’t forget about the DBA 

 It does not matter if the data is deployed on a 
NoSQL platform instead of an RDBMS. 

Still need to address: 

– Backups & recovery  

– Capacity planning 

– Performance monitoring 

– Data integration 

– Tuning & optimization 

What happens when things don’t work as 
expected and nodes are out of sync or you 
have a data corruption occurring at 2am? 

Who you gonna call? 

– DBA and SysAdmin need to be on board 


