—TEEEE——S
[2

Perficient

NoSQL

By Perry Hoekstra
Technical Consultant
Perficient, Inc.

perry.hoekstra@perficient.com

P

Perficient

Why this topic?

= Client’s Application Roadmap

“Reduction of cycle time for the document
intake process. Currently, it can take anywhere
from a few days to a few weeks from the time
the documents are received to when they are
available to the client.”

= New York Times used Hadoop/MapReduce to
convert pre-1980 articles that were TIFF
iImages to PDF.

R

1 B

Perficient

Agenda

= Some history

= What is NoSQL
m CAP Theorem

m What is lost

= Types of NoSQL
= Data Model

= Frameworks

m Demo

= Wrapup

_

P—

Perficient

History of the World, Part 1

= Relational Databases — mainstay of business
= Web-based applications caused spikes
Especially true for public-facing e-Commerce sites

= Developers begin to front RDBMS with memcache or
integrate other caching mechanisms within the
application (ie. Ehcache)

R

B

Perficient

Scaling Up

m Issues with scaling up when the dataset is just too
big

= RDBMS were not designed to be distributed

= Began to look at multi-node database solutions

= Known as ‘scaling out’ or ‘horizontal scaling’

» Different approaches include:

Master-slave
Sharding

_

P—

Perficient

Scaling RDBMS - Master/Slave

m Master-Slave

All writes are written to the master. All reads
performed against the replicated slave databases

Critical reads may be incorrect as writes may not
have been propagated down

Large data sets can pose problems as master needs
to duplicate data to slaves

_

Scaling RDBMS - Sharding P |

,,,,, Perficient

= Partition or sharding
Scales well for both reads and writes

Not transparent, application needs to be partition-
aware

Can no longer have relationships/joins across
partitions

Loss of referential integrity across shards

_

D

PesiiElRnE

Other ways to scale RDBMS

= Multi-Master replication
= INSERT only, not UPDATES/DELETES

= No JOINSs, thereby reducing query time
This involves de-normalizing data

= In-memory databases

_

P—

Perficient

What is NoSQL?

= Stands for Not Only SQL
= Class of non-relational data storage systems

= Usually do not require a fixed table schema nor do
they use the concept of joins

= All NoSQL offerings relax one or more of the ACID
properties (will talk about the CAP theorem)

_

[2

Perficient

Why NoSQL?

= For data storage, an RDBMS cannot be the be-
all/end-all

= Just as there are different programming languages,
need to have other data storage tools in the toolbox

= A NoSQL solution is more acceptable to a client now
than even a year ago

Think about proposing a Ruby/Rails or Groovy/Grails
solution now versus a couple of years ago

R

[2

How did we get here? -
Perficient

m Explosion of social media sites (Facebook,
Twitter) with large data needs

m Rise of cloud-based solutions such as Amazon
S3 (simple storage solution)

= Just as moving to dynamically-typed
languages (Ruby/Groovy), a shift to
dynamically-typed data with frequent schema
changes

m Open-source community

R

P

Perficient

Dynamo and BigTable

= Three major papers were the seeds of the NoSQL
movement
BigTable (Google)
Dynamo (Amazon)
« Gossip protocol (discovery and error detection)
« Distributed key-value data store
« Eventual consistency

CAP Theorem (discuss in a sec ..)

_

The Perfect Storm p |

Perficient

m Large datasets, acceptance of alternatives, and
dynamically-typed data has come together in a
perfect storm

= Not a backlash/rebellion against RDBMS

m SQL is a rich query language that cannot be rivaled
by the current list of NoSQL offerings

_

CAP Theorem P ‘

Perficient

= Three properties of a system: consistency,
availability and partitions

= You can have at most two of these three properties
for any shared-data system

m To scale out, you have to partition. That leaves
either consistency or availability to choose from

In almost all cases, you would choose availability over
consistency

R

P—

Perficient

Availability

= Traditionally, thought of as the server/process
available five 9's (99.999 %).

= However, for large node system, at almost any point
in time there’s a good chance that a node is either
down or there is a network disruption among the
nodes.

Want a system that is resilient in the face of network
disruption

R

Consistency Model P

PesiiElRnE

= A consistency model determines rules for visibility
and apparent order of updates.
= For example:
Row X is replicated on nodes M and N
Client A writes row X to node N
Some period of time t elapses.
Client B reads row X from node M
Does client B see the write from client A?
Consistency is a continuum with tradeoffs
For NoSQL, the answer would be: maybe

CAP Theorem states: Strict Consistency can't be
achieved at the same time as availability and partition-

. tolerance.

Eventual Consistency " ”E)ie n [;

= When no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the nodes will be consistent

m For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

= Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID

R

P—

Perficient

What kinds of NoSQL

= NoSQL solutions fall into two major areas:

Key/Value or ‘the big hash table’.
« Amazon S3 (Dynamo)
« Voldemort
e Scalaris
Schema-less which comes in multiple flavors,

column-based, document-based or graph-
based.

« Cassandra (column-based)
« CouchDB (document-based)
« Neo4] (graph-based)

« HBase (column-based)

R

Key/Value D

PesiiElRnE

Pros:
very fast
very scalable
simple model
able to distribute horizontally

Cons:

- many data structures (objects) can't be easily
modeled as key value pairs

_

Schema-Less P ‘

PesiiElRnE

Pros:
- Schema-less data model is richer than key/value pairs
eventual consistency
many are distributed
still provide excellent performance and scalability

Cons:
- typically no ACID transactions or joins

_

[P

Perficient

Common Advantages

= Cheap, easy to implement (open source)

= Data are replicated to multiple nodes (therefore identical
and fault-tolerant) and can be partitioned

Down nodes easily replaced
No single point of failure
m Easy to distribute
= Don't require a schema
m Can scale up and down
m Relax the data consistency requirement (CAP)

_

D

- 5
What am I giving up-: AT

m joins

= group by

m order by

m ACID transactions

= SQL as a sometimes frustrating but still powerful
query language

m easy integration with other applications that support
SQL

_

Cassandra p |

Perficient

= Originally developed at Facebook

= Follows the BigTable data model: column-oriented
= Uses the Dynamo Eventual Consistency model

= Written in Java

= Open-sourced and exists within the Apache family
m Uses Apache Thrift as it's API

_

P—

Perficient

Typical NoSQL API

= Basic API access:
get(key) -- Extract the value given a key

put(key, value) -- Create or update the value given
its key

delete(key) -- Remove the key and its associated
value

execute(key, operation, parameters) -- Invoke an
operation to the value (given its key) which is a
special data structure (e.g. List, Set, Map etc).

R

[P~

Cassandra and Consistency gt T i T

= Talked previous about eventual consistency

m Cassandra has programmable read/writable
consistency
One: Return from the first node that responds

Quorom: Query from all nodes and respond with the
one that has latest timestamp once a majority of
nodes responded

All: Query from all nodes and respond with the one
that has latest timestamp once all nodes responded.
An unresponsive node will fail the node

R

P—

Perficient

Cassandra and Consistency

Zero: Ensure nothing. Asynchronous write done in
background

Any: Ensure that the write is written to at least 1
node

One: Ensure that the write is written to at least 1
node’s commit log and memory table before receipt to
client

Quorom: Ensure that the write goes to node/2 + 1

All: Ensure that writes go to all nodes. An
unresponsive node would fail the write

R

Some Statistics P |
PesiiElRnE

= Facebook Search
= MySQL > 50 GB Data
Writes Average : ~300 ms
Reads Average : ~350 ms
= Rewritten with Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

_

Don’t forget about the DBA P

PesiiElRnE

= [t does not matter if the data is deployed on a
NoSQL platform instead of an RDBMS.

= Still need to address:
Backups & recovery
Capacity planning
Performance monitoring
Data integration
Tuning & optimization
= What happens when things don’t work as

expected and nodes are out of sync or you
have a data corruption occurring at 2am?

= Who you gonna call?

. DBA and SysAdmin need to be on board

